A place to share knowledge about computers, internet, mobile phones, communication, history, and others.
Rabu, 07 September 2016
Pengenalan Tulisan Tangan untuk Angka tanpa Pembelajaran
Terdapat banyak metoda pengenalan angka latin tulisan tangan, namun umumnya menggunakan metoda statistik. Ciri dari metoda statistik adalah bahwa sistem tidak pernah mempertimbangkan angka berapa kira-kira yang sedang diolahnya, karena sistem hanya mengandalkan contoh yang diberikan kepadanya lewat pembelajaran. Dalam tulisan ini diusulkan pengenalan angka tulisan tangan tanpa pembelajaran. Tetapi cukup dengan memanfaatkan ciri-ciri spesifik dari angka tersebut yang disebut sebagai properti geometri. Hasil percobaan yang dilakukan menunjukkan bahwa pendekatan ini memiliki kinerja yang lebih baik dari metoda statistik yang ada dan memiliki waktu komputasi yang lebih cepat.
Penelitian tentang pengenalan tulisan tangan khususnya untuk angka dan huruf latin, merupakan salah satu bahasan dalam pengembangan teknik pengenalan pola yang masih berkembang saat ini. Penelitian ini mulai diminati sejak tahun 1990-an, semenjak dipopulerkan oleh Prof. Ching Yee Suen [2] berbagai penelitian dilakukan untuk mengenali berbagai bentuk tulisan tangan. Perkembangan konsep pengenalan tulisan tangan saat ini yang paling banyak adalah konsep yang menggunakan metoda statistik. Ciri utama dari penggunaan dari metoda statistik adalah sistem yang dikembangkan tidak memperhitungkan atau mempertimbangkan bentuk tulisan atau objek yang sedang diolah atau dikenalinya. Sistem yang dikembangkan dengan menggunakan metoda statistik hanya berpedoman pada contoh pola dari sampel yang di ajarkan kepadanya, dan didalam proses ekstraksi cirinya pun secara umum tidak menggunakan ciri – ciri fisik yang bisa diamati oleh mata manusia [1].
Pembelajaran seperti ini akan membutuhkan banyak data untuk proses pembelajarannya, untuk beberpa kasus penggunaan metode statistik ini sangat efisien dan memiliki tingkat keakuratan yang tinggi [1,3]. Namun dengan semakin banyaknya data inipun ternyata tidak membuat sistem pembelajaran dengan menggunakan metode statistik ini akan menjadi lebih baik, malah akan semakin sulit dalam mengenali, ini dikarenakan semakin banyak data yang digunakan dalam pembelajaran, maka proses pencarian pun akan semakin spesifik sehingga membutuhkan waktu dan biaya yang lebih banyak dan objek yang diperlukanpun belum tentu didapatkan.
Beberapa penelitian telah dilakukan dalam mengenali berbagai bentuk tulisan tangan. Baik itu dalam bentuk tulisan latin maupun dalam bentuk tulisan lain seperti bahasa yang digunakan pada Negara Arab [7,8], Jepang, China [6], Korea, Spanyol [13], dan berbagai Negara lain yang tidak menggunakan tulisan latin sebagai tulisannya. Berbagai pengembangan metode sintaktik telah dilakukan untuk pengenalan tulisan tangan ini, seperti, Pengenalan huruf Arab yang menggunakan adaptive slant correction algorithm dan polygonal approximation algorithm dalam fungsi fuzzy [10], handwriting model for syntactic recognition of cursive script [9]. Penggunaan markov model [12] pun juga sangat gemar digunakan saat ini. Berbagai sistem pengenalan tulisan baik itu tulisan cetak komputer ataupun tulisan tangan, sudah sangat berkembang dengan memanfaatkan konsep marcov model.
Langganan:
Postingan (Atom)